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Abstract

This paper describes an efficient model to describe an autoregressive signal with slowly-

varying amplitude in additive white Gaussian noise. Even a simple low-order autoregressive

model becomes complicated by varying amplitude and additive white noise. However, by ap-

proximating the signal amplitude as piecewise-constant, an efficient filtering approach can be

applied in order to compute the maximum likelihood estimate for the entire data record. The

model is efficient both in terms of havng a compact set of parameters and in the computational

sense. Simulation results are provided. The algorithm has applications in signal modeling for

underwater acoustic signals, particularly active wideband signals such as explosive sources.

1 Introduction

In narrow-band active sonar, the processing bandwith is too narrow to permit the observation of

variations in the signal plus interference (SI) spectrum. This is not true in wide-band systems

where the power spectrum of interference, especially ambient noise, may significantly differ from

the signal and reverberation. After the data has been filtered to pre-whiten the interference,

signal can be modeled as a colored Gaussian process with fixed spectral shape, but fluctuating

amplitude, in additive white Gaussian noise (WGN). Unless the signal and interference have the
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same spectral shape, the fluctuating signal amplitude causes the SI spectrum to vary. This in

turn requires a high-fidelity model to estimate the continually changing SI spectrum, causing over-

parameterization. In this paper we describe a compact model that parameterizes the signal spectum

as a constant autoregressive (AR) process with fluctuating amplitude. The signal AR parameters,

white noise variance, and parameters of the amplitude envelope function constitute a complete set

of model parameters. We present a very efficient means of computing the maximum likelihood

(ML) estimates for these parameters based on filtering. We also report on the performance of the

models using simulated data and show how the model can be used in a class-specific classifier.

1.1 Previous Work

The problem that occurs when white noise is added to an AR process, thereby forming an effective

ARMA process, is well known [1] and numerous methods exist for determining the underlying

AR parameters [2], [3]. Previous work did not consider varying AR process amplitude. As the

AR process varies in level, it naturally changes the ARMA parameters which further complicates

the problem. But at the same time, it opens up an opportunity for great simplification since the

underlying parameters are compact, involving only the AR parameters, the white noise variance,

plus the parameters of the changing AR process amplitude.

1.2 Paper Summary

1. In section 2, we present the mathematical model for an autoregressive process modulated by

an envelope function in additive white Gaussian noise.

2. In section 3, we talk about how the model may be used in a classifier.

3. In section 4, we talk in general about how to estimate the model parameters.

4. In section 5, we present the exact likelihood function, which is not practical to use but serves

as a standard.

2



5. In section 6, we present a simplifying assumption that the envelope function varies slowly

so that if the data is segmented, the data in a segment has a fixed spectral model. Then,

we analyze in detail the PDF of a segment of data. We find the segment power spectrum

and autocorrelation function (section 6.1), derive the exact PDF of a segment (section 6.2),

develop an equivalent autoregressive moving average (ARMA) model for the segment (section

6.3), find the exact derivatives and Fisher information matrix (FIM) of the PDF (sections 6.4,

6.5). We then present a frequency-domain (FD) approximation to the segment PDF (section

6.6), obtain the derivatives and FIM (sections 6.7, 6.8). We use the FD approximation to

derive a filtering approach to computing the segment PDF (sections 6.9, 6.10, 6.11), as well

as the derivatives (section 6.12).

6. In section 7, we show how the segment PDF results can be combined to obtain the PDF and

derivatives for the entire data record.

7. In section 8, we summarize the algorithhm.

8. In section 9, we provide simulation results.

2 Problem Formulation

In this section we formulate mathematically an autoregressive (AR) process with slowly-varying

power in WGN.

2.1 Data model

Consider an AR signal process yt, of order P :

yt = −
P
∑

i=1

ai yt−i + et, (1)

where et is a zero-mean independent Gaussian innovation process with fixed variance σ2. Let the

data be modulated by a time-varying signal power function λt and corrupted by ut, a zero-mean
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independent Gaussian additive noise process with variance σ2
n:

xt = λ
1/2
t (φ) yt + ut, t = 1, 2 . . . N, (2)

where φ are the parameters of the envelope function (assumed to be of dimension Q). Note

that both σ2 and λt(φ) affect the power of the process at time t. In order to prevent redundant

parameters, we assume that φ is normalized as follows:

N
∑

t=1

λt(φ) = 1. (3)

The complete (P + Q + 2)-dimensional set of model parameters are

Θ = [σ2
n, σ2, a1, a2 . . . aP ,φ].

3 Classifier Methodology

Let x = [x1, x2 . . . xN ]′ be an observation vector of N samples from xt. The goal of the classifier

is to find the MAP classification hypothesis for explaining x as arising from one of several class

hypotheses, Hi.

HMAP = argmax p(Hi|x) = argmax p(x|Hi) p(Hi)

(Usually, we also assume that the apriori probablility of each classification is equal, so that the

hypothesis is also a ML hypothesis. HML = argmax p(x|Hi).)

3.1 The Class Specific Classifier

The class-specific classifier is fundamentally a Bayesian classifier that produces a maximum a pos-

teriori classification hypothesis given the observation of the raw data.

Since x is of very high dimension, a closed-form description of p(x|Hi) is impractical. The clas-

sical classification approach is to choose a set of features z = T (x) such that z is an approximately

sufficient statistic for distinguishing between any pair of classification hypotheses, empirically es-

timate p(z|Hi) from training data, and output the MAP hypothesis given z. As the number of
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classification hypotheses, M , increases, the dimension of z must also increase to maintain suffi-

ciency. But as the dimension of z increases, the accuracy of the estimated p(z|Hi) decreases. This

tradeoff is the curse of dimensionality inherent to this classification method.

A class specific classifier solves the problem of the high dimensional x in a way that avoids the

curse of dimensionality w.r.t. increasing M - by projecting the estimated p(z|Hi) into the raw data

space, using a class-dependent reference hypothesis, H0,i:

p(x|Hi) = Ji(x) p(z|Hi), (4)

where

Ji(x) =
p(x|H0,i)

p(z|H0,i)
(5)

is called the “J-function”. A different zi = Ti(x) may be tailored to each classification hypothesis,

Hi, and zi only need be an approximately sufficient statistic for distinguishing between H0,i and

Hi. Thus, the dimension of zi does not depend on the number of classification hypotheses.

In this paper, we concentrate on a specific model with a particular set of features. The model

is intended to model signals with a very specific form. By deriving the class-specific J-function, we

are able to use this model in a classifier encompasing other models and features.

3.2 Approach to J-function

A number of strategies exist for implementation of Ji(x) in (4). Either a fixed or floating reference

hypotheses may be used for H0,i [4]. The ML method is a subset of the floating reference hypothesis

method [4] and is prefereble whenever a model depends on a compact set of parameters and is

suitable for ML exstimation. The maximum likelihood method, which we use here to implement

Ji(x), is written

Ji(x) =
p(x; Θ̂)

(2π)−
D
2 |I(Θ̂)|

1

2

, (6)

where Θ̂ is the ML estimate of Θ, I(Θ̂) is the Fisher’s information matrix [1] for the ML estimator

of parameter Θ, and D is the dimension of Θ. Notice that to implement (6), we will need a

functional form of the likelihood function as well as the Fisher’s information matrix.
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4 Parameter Estimation

Besides obtaining an efficient functional form of the likelihood function, we also need to estimate

the values of the parameters. Our approach is to obtain initial parameter estimates for Θ, then

iterate to find the ML estimate using an approximate Newton-Raphson iteration based on the

Fisher’s Information matrix.

The Newton-Raphson iteration requires not only the FIM, but also the first derivatives of the

log-likelihood function with respect to the parameters. The first derivatives are more important

from an accuracy point of view since an inaccurate FIM only slows down the algorithm, while an

inacurate derivative gets you the wrong result.

Consider a general log PDF that depends on D parameters: θ = [θ1, θ2 . . . θD]′. The Fisher’s

information between any two parameters θi and θj is defined by

Iθi,θj
= −E

{

∂2 log p(x;θ)

∂θi∂θj

}

. (7)

Collecting all these values into the matrix I(θ), we have the D × D Fisher’s information matrix.

The Cramer-Rao lower bound states that the covariance matrix C of any joint unbiased estimator

for the parameters θ is such that

x′
(

C− I−1(θ)
)

x > 0

for all x 6= 0. This effectively means that I−1(θ) is the lower bound for the covariance of any

unbiased estimator.

The inverse of the Fisher’s information matrix is a good estimate of the parameter estimation

error covariance and is useful for iterative optimization. Given a parameter estimate θn, the new

estimate is obtained as

θn+1 = θn + I−1(θn) δ, (8)

where

δ = [d(θ1) d(θ2) . . .]′
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is the gradient vector formed from the first partial derivatives

d(θi)
∆

=
∂

∂θi
log p(x;θ)

∣

∣

∣

∣

θi=θn,i

.

5 The Exact Likelihood Function.

To implement the numerator of (6), we need p(x;Θ), the formula for the data PDF as a function

of the parameters, or likelihood function. Let σ2 RN be the covariance matrix of process yt. Thus,

RN is the covariance matrix of the AR process yt when σ2 = 1. The covariance of a stationary

AR process is symmetric and Toeplitz and can easily be derived from the inverse Fourier transform

of the theoretical AR power spectrum [1]. Let the matrix Λ be a diagonal matrix with elements

Λt,t = λt, 1 ≤ t ≤ N . Let u be a zero-mean Gaussian random vector with variance σ2
n. In matrix

form, (2) becomes

x = Λ1/2y + u,

and the covariance of x is

C
∆

= E{xx′} = σ2
nI + σ2 Λ1/2 RN Λ1/2. (9)

Now we have the closed form for the PDF of x parameterized by C, p(x;C).

log p(x;Θ) = −
N

2
log(2π) −

1

2
log |detC| −

1

2
x′C−1 x. (10)

Equation (10) is exact, but its usefulness is limited because the size of C is N × N . In many

real-world problems, N is too large to evaluate (10) efficiently. Nevertheless, (10) does serve an

important role in evaluating the accuracy of approximate methods.

6 Piecewise Stationary Model

To arrive at an efficient implementation of the PDF, we assume that λt varies slowly with time, and

so may be approximated by a constant, Lm(φ), over an interval of M samples, where 1 < M << N .
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Thus,

λt = Lm, 1 + (m − 1)M ≤ t ≤ mM, (11)

where m is the segment number and we have dropped the argument (φ) for notation simplicity.

This assumption means there is a fixed spectral model in effect in the segment. This leads to

a simplified model for the PDF in a segment. Note that we do not assume the segments are

independent when we compute the PDF of the entire data record. We only recognize that the

model is constant within a segment.

We focus now on the PDF for a single data segment xm and will later extend the result to the

full data record x. Let

xm = [xM(m−1)+1 . . . xMm]′

be the segment m data. In this section, we concentrate now on the PDF of the segment m data,

for which the parameters are defined as

θm = [σ2
m, σ2

n, a1, . . . aP ] (12)

where we combine the parameters Lm and σ2 into a single parameter

σ2
m = Lmσ2. (13)

6.1 Segment Power Spectrum and Autocorrelation Function

The power spectrum of the data within a segment can be written as

ρN
k,m = σ2

n +
σ2

m

|AN
k |2

. (14)

where we have used (2), (11), (13), and where AN
k is shorthand for A(ej2πk/N ), which is the Z-

transform of the AR polynomial a = [1, a1, . . . aP ] evaluated on the unit circle.

Since it is zero-mean, its covariance matrix is equal to its autocorrelation matrix. The auto-

correlation function (ACF) is the inverse Fourier transform of the power spectrum. Since it is not

practical to use the continuous frequency values we must find a practical means of computing the

8



ACF using the DFT. Let rt,m be the ACF lag t in segment m. For any stable stationary Gaussian

process, the ACF decays to zero. Assuming rt,m dies to zero for t < K where K < M , we can

calculate rt,m from ρ2M
k,m using a length 2M inverse DFT. We first take the length 2M DFT of a

(zero padded to length 2M), compute ρ2M
k,m using (14), then take the inverse DFT. The result is

valid up to lag M . In MATLAB,

A=fft([a(:); zeros(2*M-P-1,1)]);

rho = sig2n + sig2m./abs(A).^2;

rm = real(ifft(rho));

rm=rm(1:M);

6.2 Segment PDF

Modifying (10) for a single segment m,

log p(xm;Θ) = −
M

2
log(2π) −

1

2
log |detCm| −

1

2
x′

mC−1
m xm, (15)

where Cm is the M × M covariance

Cm = σ2
nI + σ2

mRM .

Since Cm is symmetric and Toeplitz, we may use the efficient Levinson algorithm to compute (15),

which provides the determinant of Cm as a by-product, however M may still be too large to be

practical.

6.3 ARMA model using Spectral Factorization

Although (14) is a compact spectral model, it is not in the most useful form. If we re-write it

in a rational form, we may implement the PDF using linear filtering. By assuming the process is

quasi-stationary within segments of length M , we may represent the power spectrum in a rational

form equivalent to an ARMA process. We may re-write (14) as

ρN
k,m =

σ2
m + σ2

n|A
N
k |2

|AN
k |2

= σ2
b,m

|BN
k,m|2

|AN
k |2

, (16)
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which is the PSD of an ARMA(P, P) process. By equating the numerators in (16) we see that the

z-transformed AR and MA parameters, A(z) and Bm(z), respectively, are related by

σ2
b,m Bm(z)B∗

m(1/z∗) = σ2
m + σ2

nA(z)A∗(1/z∗). (17)

To obtain the equivalent ARMA parameterization, we need to find σ2
b,m and bm = [1, bm,1 . . . bm,P ],

the filter coefficients corresponding to Bm(z). Using (17), we can solve easily for the coefficients of

the order 2P + 1 polynomial in z corresponding to σ2
b,m Bm(z)B∗

m(1/z∗), which we denote by βm.

In MATLAB, equation (17) is realized in the time domain as:

beta_m = sig2n*conv(a(:),flipud(a(:)));

beta_m(P+1) = beta_m(P+1) + sig2m;

Using the technique of spectral factorization [5], we observe that βm is proportional to the convo-

lution of bm and b∗
m, which is bm reversed in time so it has the combined roots of bm and b∗

m.

The roots of b∗
m are the reciprocal of the roots of bm. Thus, we use the following procedure: find

the roots of βm and divide them into reciprocal pairs. Take the root with magnitude less than 1

from each pair and assign it to bm. Then form polynomial bm from the roots.

To find the scale factor σ2
b,m, we may equate the coefficients of the zero-th power of z for both

sides of (17), resulting in

σ2
b,m

P
∑

i=0

b2
m,i = σ2

m + σ2
n

P
∑

i=0

a2
i ,

or

σ2
b,m =

σ2
m + σ2

n

∑P
i=0 a2

i
∑P

i=0 b2
m,i

.

Thus, we have an efficient method for obtaining the ARMA filter parameters

θb
m = [σ2

b,m, bm,1, bm,2 . . . bm,P , a1, a2 . . . aP ],

which are an equivalent set of parameters to θm, although they are overparameterized.
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6.4 Exact Derivative Analysis of Segment PDF

We now find the exact derivatives of (15) with respect to a arbitrary parameter θ. Using standard

results for matrix derivatives, we have

∂ log p(xm)

∂θ
= −

1

2
trace(C−1

m Dθ
m) +

1

2
x′

mC−1
m Dθ

mC−1
m xm,

where Dθ
m is the M -by-M matrix of derivatives of the elements of Cm with respect to θ. Since Cm

is a symmetric Toeplitz matrix formed from the ACF sequence,

Cθ
m = Toeplitz(rm),

Dθ
m is a symmetric Toeplitz matrix formed from the derivatives of the ACF sequence:

Dθ
m = Toeplitz(rθ

m),

where

rθ
m = [rθ

0,m, rθ
1,m . . . rθ

M−1,m].

Finally, since the ACF is the inverse FFT of the power spectrum,

rm = IFFT(ρN
0,m, ρN

1,m . . . ρN
M−1,m),

we have

rθ
m = IFFT(ρNθ

0,m, ρNθ
1,m . . . ρNθ

M−1,m),

where ρNθ
k,m is the derivative of ρN

k,m in (14) with respect to scalar parameter θ. These derivatives

are given later in equations (23) through (25).

To summarize, the derivatives of (15) with respect to a parameter θ can be computed in MAT-

LAB as

Cm=toeplitz(rm(1:M));

Cmi=inv(Cm);

d = real(ifft(rho_theta));

D=toeplitz(d(1:M));

lpxm_theta = -.5*trace( Cmi * D ) + .5 * x’*Cmi*D*Cmi*x;
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where rm is the M -by-1 ACF vector rm and rho theta is 2M -by-1 vector of derivatives ρ2Mθ
k,m . This

is accurate as long as the ACF corresponding to the power spectrum dies to zero at a lag less than

M .

This approach is computationally of order M3 where M may be quite large. But, since Cm and

Dθ
m are symmetric and Toeplitz, an order M2 approach exists that employs the Levinson algorithm.

This may still be prohibitive, so we seek an order M algorithm based on filtering.

6.5 Segment PDF Fisher Information Analysis - Exact

The exact second derivatives of (15) may also be obtained and the Fisher’s information computed.

Let θ1, θ2 be two arbitrary spectral parameters. Then

∂2 log p(xm)

∂θ1∂θ2
= 1

2trace(C−1
m Dθ1C−1

m Dθ2) − x′
mC−1

m Dθ1C−1
m Dθ2C−1

m xm

Im(θ1, θ2) = −E

{

∂2 log p(xm)

∂θ1∂θ2

}

= −1
2trace(C−1

m Dθ1C−1
m Dθ2) + trace(CmC−1

m Dθ1C−1
m Dθ2C−1

m )

= 1
2trace(C−1

m Dθ1C−1
m Dθ2)

The terms Hθ1 = C−1
m Dθ1 and Hθ2 = C−1

m Dθ2 can also be obtained efficiently using the Levin-

son algorithm. Despite this, the use of the above equation is primarily for validation since it is

computationally expensive and not useful for combining segments.

6.6 Frequency Domain Segment PDF

In the frequency domain, it is easier to analyze how the PDF of xm depends on its parameters, θ.

Let XM
k,m, k = 0, 1 . . . M − 1 be the DFT of xm

XM
k,m =

M
∑

t=1

xt e−j2πk(t−1)/M . (18)
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The frequency-domain (FD) approximation to (15) is given by the log-PDF

log p(xm; ρM
0,m . . . ρM

M−1,m) = −
1

2

M−1
∑

k=0

{

log(2πρM
k,m) +

|XM
k,m|2

MρM
k,m

}

. (19)

It may be verified that:

1. (19) is an approximation to (15).

2. Although written explicitly in terms of the DFT coefficients Xk,m, it is the PDF of a real

multivariate Gaussian density on xm. That is, if it is re-written in terms of xm by substituting

the DFT formula (18), it may be put into the same form as (15), however the covariance matrix

is not Toeplitz.

3. It is an exact PDF, that is, it integrates identically to 1 on xm.

4. The DFT bins are independent complex Gaussian RVs. A data sample xm drawn from this

PDF has independent complex Gaussian DFT bins whose expected magnitude-squared is

E
{

|XM
k,m|2

}

= MρM
k,m, 0 ≤ k < M. (20)

PDF (19) represents a spectrally non-white Gaussian process that has independent DFT bins. It

is well known that stationary Gaussian processes have DFT coefficients that are asymptotically

independent as the size of the data record goes to infinity, but only truly independent if spectrally

white [6]. However, because (19) is defined in terms of the magnitude-squared DFT bins, it is not

a stationary process. However, it is a circularly stationary process.

6.7 Derivative Analysis of Segment PDF - Frequency domain

Let the first derivatives of (19) be denoted by

d(θ) =
∂

∂θ
log p(xm;θ),

where θ is some arbitrary parameter upon which ρM
k,m depends. Although we will not use the first

derivatives of (19) themselves, their forms will help us find efficient means of finding the derivatives
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of (15). We have

dm(xm; θ)
∆

= ∂
∂θ log p(xm; θ) = −1

2

∑M−1
k=0

(

∂ρM
k,m

∂θ

){

1
ρM

k,m

−
|XM

k |2

M(ρM
k,m

)2

}

= −1
2

∑M−1
k=0

(

∂ρM
k,m

∂θ

)

Tm(k),

(21)

where

Tm(k) =
1

ρM
k,m

−
|XM

k |2

M(ρM
k,m)2

(22)

From (14), we have

∂ρM
k,m

∂σ2
n

= 1 (23)

∂ρM
k,m

∂σ2
m

=
1

|AM
k |2

(24)

∂ρM
k,m

∂ai
= −2Re

{

σ2
mAM

k ej2πki/M

|AM
k |4

}

, 1 ≤ i ≤ P, (25)

leading to

dm(xm;σ2
n) = −

1

2

M−1
∑

k=0

{

1

ρM
k,m

−
|XM

k,m|2

M(ρM
k,m)2

}

, (26)

dm(xm;σ2
m) = −

1

2

M−1
∑

k=0

{

1

ρM
k,m

−
|XM

k,m|2

M(ρM
k,m)2

}

1

|AM
k |2

(27)

dm(xm; ai) =
M−1
∑

k=0

{

1

ρM
k,m

−
|XM

k,m|2

M(ρM
k,m)2

}

Re

{

σ2
mAM

k ej2πki/M

|AM
k |4

}

1 ≤ i ≤ P, (28)

We may obtain some simplification and intuitive understanding if we employ the equivalent

ARMA parameterization. If we use (16) and define

W M
k,m =

XM
k,mAM

k

BM
k,m

√

σ2
b,m

, (29)

V M
k,m =

W M
k,m

BM
k,m

, (30)

and

UM
k,m =

W M
k,mAM

k

BM
k,m

√

σ2
b,m

, (31)
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equations (26) through (28) may be simplified to

dm(xm;σ2
n) = −

1

2

M−1
∑

k=0

{

1

ρM
k,m

−
|UM

k,m|2

M

}

, (32)

dm(xm;σ2
m) = −

1

2

M−1
∑

k=0

{

1

ρM
k,m|AM

k |2
−

|V M
k,m|2

Mσ2
b,m

}

(33)

dm(xm; ai) =
σ2

m

σ2
b,m

M−1
∑

k=0

Re

{

e−j2πik/M

AM
k |BM

k,m|2

}

−
1

M

M−1
∑

k=0

Re

{

V M
k,mV̄ M

k,me−j2πik/M

AM
k

}

1 ≤ i ≤ P, (34)

These alternative forms will help us in section 6.12.

6.8 Segment PDF Fisher Information - Frequency domain

Using (21), the Fisher’s information between any two spectral parameters θ1 and θ2 equals

Im(θ1, θ2) = −E

{

∂2

∂θ1∂θ2
log p(xm;θ)

}

=
1

2
E

{

∂

∂θ2

M−1
∑

k=0

(

∂ρM
k,m

∂θ1

)

Tm(k)

}

Before carrying out the derivative with respect to θ2, notice that Tm(k) is zero in expected value.

Therefore, the only terms remaining are associated with the derivative of Tm(k). Note that

E
{

∂
∂θ2

Tm(k)
}

= E

{(

− 1
(ρM

k,m
)2

+ 2
|XM

k,m
|2

M(ρM
k,m

)3

)(

∂ρM
k,m

∂θ2

)}

=

(

− 1
(ρM

k,m
)2

+ 2
MρM

k,m

M(ρM
k,m

)3

)(

∂ρM
k,m

∂θ2

)

= 1
(ρM

k,m
)2

(

∂ρM
k,m

∂θ2

)

Therefore,

Im(θ1, θ2) =
1

2

M−1
∑

k=0

(

∂ρM
k,m

∂θ1

)

1

(ρM
k,m)2

(

∂ρM
k,m

∂θ2

)

(35)

Using (23) through (25), in (21) and (35), we obtain the Fisher information for the parameters

σ2
n, σ2, a1, a2 . . . aP for the segment m. We later combine them to obtain the FIM for the entire

data record.
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6.9 Segment PDF computation by Filtering

Efficient evaluation of (15) may be accomplished by filtering. We may write

log p(xm;θ) = −
M

2
log(2π) −

1

2
log |detCm| −

1

2
w′

mwm, (36)

where

wm = Hm xm, (37)

and Hm is the Cholesky decomposition of Cm:

Cm = H′
mHm

and if Cm has a symmetric Toeplitz form (constant along every diagonal and consistent with any

stationary process), then Hm is a whitening matrix that results in the covariance of wm being the

identity matrix. Thus, we evaluate p(xm;θ) by whitening xm, finding the total power, w′
mwm, and

compensating for the determinant of the whitening matrix, |detHm|.

We seek an efficient filter implementation that approximates Hm. From systems theory, we

know that Hm has a linear shift invariant filtering equivalent. This filter is based on the power

spectrum (16) which suggests an ARMA whitening filter with Z-transform

Hm(z) =
1

√

σ2
b,m

A(z)

Bm(z)
. (38)

If we begin filtering xm with this filter, there will be a startup transient since the proper initial

conditions are unknown. Once the transient has died out, samples at the filter output will be

uncorrelated and therefore independent. We can calculate the initial samples of wm exactly, then

switch to the filter output after the startup transient.

6.10 Determining length of startup transient

There are many ways to measure the length of the startup transient, which is the impulse response

of whitening filter Hm(z) = A(z)/Bm(z). A method we have found efficient and useful is to use the

FD method to solve for the autocorrelation function (ACF) corresponding to the theoretical power
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spectrum of the inverse process pk,m = |Ak|
2/|Bk,m|2. To allow for an ACF up to length M , we

zero-pad the polynomials a and bm up to length 2M , then take the magnitude-square of the the

length-2M DFT, followed by an inverse DFT. The result is a length-2M inverse ACF estimate. In

MATLAB,

A=fft([a(:); zeros(2*M-P-1,1)]);

B=fft([b(:); zeros(2*M-P-1,1)]);

A2=msq(A);

B2=msq(B);

ri = real(ifft(A2./B2));

Let T be the length of the ACF measured as the index of the last lag with amplitude larger than

ri(1)/500:

K = max(find(abs(ri(1:M)) > ri(1)/500));

K=max(K,P);

Note that we force K to be at least as large as P , the filter order. An example of determining filter

startup transient is shown in Figure 1. The MATLAB code segment below was used to produce it.

r = real(ifft(B2./A2));

R=toeplitz(r(1:M));

Ci=inv(chol(R))’;

w1 = Ci * x(1:M);

% determine whitened samples by block of M samples

w=filter(a,b,x);

plot(w-w1);
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Figure 1: Example of filter startup transient. Top graph: difference between whitened samples

computed in a block with samples computed by filtering. Lower graph: ACF of the inverse power

spectrum. Notice that after about 10 samples, there is very close agreement, which agrees with the

lower plot showing the decay of ACF corresponding to the inverse spectrum.
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6.11 Extension of filter beyond K samples.

Let the length of startup transient be equal to K samples where K ≤ M . Let us concern ourselves

only with the first n samples of x, where K < n < M . Modifying (36),

log p(x1, x2 . . . xn;θ) = −
n

2
log(2π) −

1

2
log |detCn

m| −
1

2

n
∑

i=1

w2
i,m, (39)

where Cn
m is the n × n initial sub-block of Cm. Now we ask how does this equation change as

we add one more sample, xn+1? Since the filter startup transient has died off, the values of wi,m

obtained from (37) will be the same as values of wn obtained by filtering. Therefore,

log p(xm;θ)|m=n+1 = log p(x1, x2 . . . xn;θ) −
1

2
log(2π) −

1

2
w2

n+1,m −
1

2
log |detCn+1

m /detCn
m|,

however, the ratio detCn+1
m /detCn

m converges rapidly to σ2
b,m as n > K. Thus, we have

log p(x1, x2 . . . xn+1;θ) = log p(x1, x2 . . . xn;θ) −
1

2
log(2πσ2

b,m) −
1

2
w2

n+1,m. (40)

Combining (40), (39), and extending out to sample M ,

log p(xm;θ) = −
K

2
log(2π)−

1

2
log |detCK

m| −
1

2

K
∑

i=1

w2
i,m −

M
∑

t=K+1

{

1

2
log(2πσ2

b,m) +
1

2
w2

t,m

}

, (41)

where wi,m is obtained from (37) for i ≤ K and from filtering for i > K.

6.12 Derivative Analysis of Segment PDF - filtering approach

The results of section 6.4 are still a little bit cumbersome to implement. Using filtering, we may

find a much more efficient approach to finding the derivatives of PDF (15), then extend it across

segment boundaries.

The filtering approach to finding the derivatives is directly analogous to section (6.11) where the

segment likelihood function is formed. We begin with the exact derivatives for the first K samples,

then add the filtering results to obtain the derivatives of the entire segment.

Results from the FD analysis can be used as a guide. The time-domain equivalents of equations

(32) through (34) suggest the filtering approach to obtain contributions of sampes K + 1 to M . In

MATLAB notation, let
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w=filter(a,b,x)/sqrt(sig2b);

u=filter(a,b,w)/sqrt(sig2b);

v=filter(1,b,w);

va=filter(1,a,v);

Then to compute the contributions of samples K + 1 to M , equation (32) becomes

Dsig2n = -.5*sum(1./rho)*(M-K)/M + .5 * sum(u(K+1:M).^2);

Equation (33) becomes

Dsig2m = -.5*sum(1./rho./A2)*(M-K)/M + .5/sig2b*sum(v(K+1:M).^2);

Equation (34) becomes

da1 = real(ifft(1./conj(A)./B2));

da1=da1(2:P+1) * (M-K);

for i=1:P,

Da(i) = sig2./sig2b * (da1(i) - sum(v(K+1:M) .* va(K+1-i:M-i)));

end;

7 Combining Segments for Entire data Set

We have extensively analyzed the segment PDF p(xm;θm) given in (15). We have the derivatives

dm(xm; θ) for each of the parameters in θm as well as FD approximations to the Fisher information

matrix Im(θm). We would now like to combine the results to obtain the complete data PDF p(x;Θ)

given in (10) as well as the associated derivatives and FIM.

7.1 Combining Segment Likelihood Functions

We cannot simply add the segment PDFs to obtain the full data PDF because this would imply

that the data segments are independent, and they are not. To obtain the full data PDF, we need
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to extend the process of whitening which we employed within a segment in section 6.11. Note

that equation (41) assumes the data spectrum (and therefore the ARMA whitening filter) remains

constant, so it is not valid for samples greater than M . It is natural to ask what happens as we

continue filtering when we cross over the boundary to a new segment? The only obstacle is the

fact that the whitening filter changes at each segment boundary. If we have made M small enough

that the filter coefficients change only slightly, we can have approximate segment-to-segment filter

continuity by using the filter state variables for segment m − 1 as the initial filter conditions for

segment m, only changing the filter coefficients. We have, the main result,

log p(x;θ) = −K
2 log(2π) − 1

2 log |detCK
1 | − 1

2

K
∑

t=1

w2
t,1 +

M
∑

t=K+1

{

1
2 log(2πσ2

b,1) + 1
2w2

t,1

}

+

N/M
∑

m=2

{

M
2 log(2πσ2

b,m) + 1
2w

′
mwm

}

(42)

where wi,m is obtained from (37) for i ≤ K and from filtering for i > K. The filter coefficients are

re-calculated at each segment boundary and filter continuity is maintanted by retaining the filter

initial conditions as the boundary is crossed.

7.2 Derivatives of the Full data PDF

One obstacle to overcome in extending the results of the segment PDF to the full PDF is the

different parameterizations. In the full PDF, the power of the AR process is a scalar variance σ2

multiplied by a time-varying envelope function λt(φ). But, in the segment PDF the signal power

equals σ2
m = Lmσ2 where Lm is the value of the piecewise constant function λt(φ) in the segment.

We take a two-step approach. First we expand the parameter set to include the segment signal

powers. Let the expanded parameters be denoted by

Θ′ = [σ2
n, a1, a2 . . . aP , σ2

1 . . . σ2
N/M ].

We then calculate the derivatives of log p(x;Θ′) with respect to each parameter. Finally, we

transform the results to obtain the derivatives with respect to parameters Θ.
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In the first step, we take a leap of faith to arrive at an excellent and efficient approximation

that can be validated later numerically and by comparing to the exact results. Essentially, we take

the analogous approach to calculating the full data PDF by extending the filter approach in section

6.12 within a segment to multiple segments. Since we have derived a filtering implementation of the

derivative calculation, we continue across segment boundaries in the same fashion - changing the

filter coefficients to reflect the changed signal power yet maintaining filter continuity by retaining

the filter initial conditions from the previous segment.

In the second step, we transform the results. Because Lm is a function of φ, we can write

σ2
m = Lm(φ1, φ2 . . . φQ),

where Q is the dimension of φ. So, if we write log p(x;Θ) by substituting σ2Lm(φ) for σ2
m into

log p(x;Θ′), the chain rule of derivatives gives

∂ log p(x;Θ)

∂σ2
=

N/M
∑

m=1

Lm(φ)

(

∂ log p(x;Θ′)

∂σ2
m

)

,

∂ log p(x;Θ)

∂φi
=

N/M
∑

m=1

σ2 Lφi
m

(

∂ log p(x;Θ′)

∂σ2
m

)

,

where

Lφi
m

∆

=
∂ log Lm(φ)

∂φi
.

The remaining parameter, σ2
n, a1, a2 . . . aP are identical so, for example

∂ log p(x;Θ)

∂a1
=

∂ log p(x;Θ′)

∂a1
.
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All of this can be written in the matrix form
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where F is the (P + Q + 2) × (P + 1 + N/M) matrix
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7.3 Fisher Information of the Full data PDF

As with the derivatives, we make two steps: we obtain the FIM for the full data PDF in the

segmented parameterization Θ′, then convert the results. Since accuracy of the FIM is not as

critical as the accuracy of the derivatives, and because of the computational load of the FIM

calculation, we settle for the FD approximations in section 6.8 simply added up over the segments.

The implicit assumption here is that the segments are statistically independent, which they are not.

This dependence is only an edge effect, however. Following the development above for derivatives,
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we write that

I(x;Θ) = F I(x;Θ′) F′.

8 Algorithm Summary

The algorithm proceeds as follows.

1. Obtain initial parameter estimates Θ̂. Compute Lm, 1 ≤ m ≤ N/M according to the envelope

model.

2. Determine the log-PDF, derivatives and FIM for the entire data record in terms of the ex-

tended parameter set Θ′:

(a) Zero the accumulators for the data log-likelihood function, all derivatives, and FIM.

Segment number is set to m = 1.

(b) The segment power spectrum is computed for segment m (section 6.1).

(c) Using the results of section 6.3, the ARMA filter parameters θb
m for segment m are

obtained.

(d) If this is the first segment, the length of the startup transient (K) is determined (section

6.10). The whitened data for the first K samples is determined (37). Then the exact

log PDF value of the first K samples is determined (equation 36). The segment data is

filtered by the whitening filter (38). To form M samples of whitened data, samples 1

through K are taken from (37), while samples K +1 through M are taken from the filter

output. The log PDF value for the M samples of the segment is calculated combining

the exact PDF of the first K samples with the filter output (equation 41). Add the

segment log PDF value to the log-PDF accumulator. Save the filter initial conditions.

(e) If this is not the first segment, the segment data is filtered by the whitening filter (38)

using the stored initial conditions from the previous segment. This is used to compute

24



the segment log-PDF (see the last term in (42). Add the segment log PDF value to the

log-PDF accumulator. Save the filter initial conditions.

(f) If this is the first segment, use section (6.4) to obtain the exact derivatives for a block

of the first K samples. Then, use section (6.12) to obtain the contribution of samples

K + 1 through M by filtering. Save all initial conditions for the various filters. Add

the segment contribution to the derivative accumulators. Note that the derivative with

respect to parameter σ2
m gets a contribution only for segment m.

(g) Use section (6.8) to obtain the FD approximation to the segment FIM. Add to the

FIM accumulator. Note that terms involving parameter σ2
m get a contribution only for

segment m.

(h) Repeat steps (a) through (h) until all segments have been processed. At this point, we

have the log-PDF value for the entire data record as well as derivatives of the log-PDF

for each parameter in Θ′.

3. Convert the derivatives and FIM that are in terms of Θ′ to the parameters set Θ (section

7.2).

4. Update the parameter Θ̂ estimates using (8).

5. Repeat steps 2 through 4 until Θ̂ converges. Monitor the log-likelihood function, it should

increase at each step or remain the same.

9 Simulation

We conducted two experiments. In the first, a simple smaller experiment was used as a means

of comparing the exact PDF (10) and numerically computed derivatives with the FD approach

(sections 6.6 and 6.7) and filtering approach (sections 6.11 and 6.12). We used a Gaussian shaped

envelope function:

Lm = (2πV )−1/2 exp−(m−µ)2/(2V ),
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Figure 2: Comparison of log-PDF values for 24 trials using filtering approximation. Left panel:

approximate vs. exact log-PDF. Right panel: approximation error vs. exact log-PDF.

where µ, V are the mean and variance of the Gaussian shape. The parameters we used are: M = 48

samples, N/M = 16 segments, σ2 = 60, σ2
n = 5, V = 28.44, µ = 8.5, and an order-2 AR model

with

a=[1.0000 -0.9899 0.4900]

The envelope function λt was a step-wise constant function equal to Lm in each segment. For

each of 24 trials, we computed the exact log-PDF according (9) and (10). Next, we computed the

log-PDF according to the algorithm described in section 8 which uses the filtering approximation

(equation 42). In figure 2 we compare the exact PDF values with the approximation. There is very

close agreement with log-PDF error within +/-0.4. The same experiment was conducted using

the FD approximation to the segment PDF (section 6.6), accumulated over the segments. The

results are shown in figure 3 showing a bias of -4 and a variation of +/-10. This clearly shows the

superiority of the filtering approach as compared with the FD approach. A similar comparison can

be made for the derivatives of the log-PDF. In figures 4 and 5, we see very close agreement with

the exact value for the algorithm of section 8 (which uses the filtering approach from section 7.2),

whereas the FD derivatives have significant errors, especially the AR parameters. If we look more

closely at the derivatives for parameter a1 (figure 6), we see a dramatic improvement when the

filtering approach is used.
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Figure 3: Comparison of log-PDF values for 24 trials using FD approximation. Left panel: approx-

imate vs. exact log-PDF. Right panel: approximation error vs. exact log-PDF.
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Figure 4: Comparison of log-PDF derivatives values for 24 trials using filtering approximation. In

each panel the exact derivative, determined numerically from equation (10), is plotted on the X

axis and the approximation is plotted on the Y axis.
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Figure 5: Comparison of log-PDF derivatives values for 24 trials using FD approximation. In each

panel the exact derivative, determined numerically from equation (10), is plotted on the X axis and

the approximation is plotted on the Y axis.
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Figure 7: Comparison of execution times for equation (10) (triangles) and the procedure in section

8 (circles) as a function of N .

To compare execution times, we compare the time to execute the procedure in section 8 with

equation (10) as a function of the total number of samples N . The results are shown in figure 7.

In the second experiment, we demonstrated the parameter estimation accuracy. The parameters

we used are: M = 128 samples, N/M = 60 segments, σ2 = 60, σ2
n = 5, V = 56.2, µ = 30.5, and an

order-4 AR model with

a=[1.0000 -1.2124 1.2125 -0.8760 0.3540]

An example of simulated data is shown in Figure 8. To demonstrate the whitening process, the

spectrogram of the concatenated whitened samples wt,i, 1 ≤ i ≤ N/M, 1 ≤ t ≤ M is also shown.

The true values of the parameters were not used in the simulation except to create the data.

Initial parameter estimates were obtained by an ad-hoc means, then used as a starting point in the

algorithm. A typical maximum-likelihood convergence cycle is as follows:

lpX(1)=-18773.774317, del=9058.229974, step=0.500000

lpX(2)=-18294.994823, del=478.779494, step=1.000000
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Figure 8: Example of simulated data. Top frame: theoretical power spectrum as a function of

segment. Center panel: example of spectrogram of data. Bottom panel: spectrogram of whitened

data wt,i obtained from time-varying ARMA filter in accordance with true parameter values.
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lpX(3)=-18290.429420, del=4.565404, step=1.000000

lpX(4)=-18274.643158, del=15.786262, step=1.000000

lpX(5)=-18274.241121, del=0.402037, step=1.000000

lpX(6)=-18274.239577, del=0.001544, step=1.000000

lpX(7)=-18274.239531, del=0.000046, step=1.000000

lpX(8)=-18274.239530, del=0.000001, step=1.000000

lpX(9)=-18274.239530, del=0.000000, step=1.000000

where lpX(i) is the log-PDF value for iteration i, del is the amount of increase in lpX, and step

is the step size a multiplicative factor that is normally 1. Notice the rapid convergence, decreasing

del by over an order of magnitude per step. This is a sign that the derivatives as well as FIM are

correct.

A better indication that the algorithm is working can be had by comparing simulated parameter

covariance with the CR bound. We created 1000 examples of the data record. On each record, we

iterated to obtain the ML parameter estimates. The parameters Θ had dimension 8 and consisted

of

Θ = [σ2
n, a1, a2, a3, a4, σ

2, V, µ].

The average parameter estimates of 1000 trials are

True parameter values

[5.0000 -1.2124 1.2125 -0.8760 0.3540 60.0000 56.2000 30.5000]

Average of 1000 trials:

[5.0033 -1.2097 1.2081 -0.8734 0.3518 59.7153 56.5399 30.5487]

The mean and covariance of the estimates are shown below along with the true values and the

CR bound. Note that unlike the likelihood function and its first derivatives, the FIM (CR bound)

does not depend on the data dircetly; it depends only on the parameters. If the true parameter

values are substituted in, the result is the theoretical FIM and CR bound, although we used the
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FD approximation. In figure 9, we compare the empirical parameter estimation error covariance

with the inverse of the theoretical FIM. The match is quite good. One half of the log determinant

of the FIM is a component of the denominator of the J-function. Note that the two matrices above

have half-log-determinats of -15.55 and -15.12, respectively.

10 Conclusion

We have presented a model for autoregressive processes with time-varying amplitude in white Gaus-

sian noise. Because the exact theoretical implemetation of the probability density function (PDF)

is cumbersome, we have derived a very accurate and efficient filter-based implementation for use in

a maximum likelihood (ML) framework or in a class-specific classifier. The key simplifying assump-

tion is that the amplitude varies relatively slowly so that for a given time, M samples, the process

can be regarded as fixed and a linear shift-invariant filter can whiten the data. The model uses

the most compact parameterization and the likelihood function is computed very efficiently using

filtering. At each M -sample segment, the whitening filter is recalculated and the filter continues.

The filtering approach is extended to the calculation of the log-likelihood derivatives which are

essential in order to iterate to obtain the ML estimates. We demonstrated maximum likelihood

estimation on simulated data. Results obtained using an efficient filtering method are compared

with the exact formulas and show not only very close agreement but orders of magnitude lower

processing requirements. As a final check, empirical parameter estimation covariance is compared

with and agrees closely with the Cramer-Rao (CR) lower bound.
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